Objective Bayesian Analysis for a Spatial Model with Nugget Effects

نویسندگان

  • Cuirong Ren
  • Dongchu Sun
  • Zhuoqiong He
چکیده

Objective priors, especially reference priors, have been well-known for geostatistical data since Berger, et al. (2001). A long-standing problem is to develop objective Bayes inference for spatially correlated data with nugget effects. In this paper, objective priors for such cases are systematically studied. In addition to the Jeffreys priors and commonly used reference priors, two types of “exact” reference priors are derived based on improper marginal likelihoods, so an “equivalence” theorem is developed in the sense that the expectation of any function of the score functions of the marginal likelihood function can be taken under marginal likelihoods. Surprisingly, the two type exact reference priors are identical. The properiety of the marginal priors and joint posteriors are studied for a large class of objective priors including all the objective priors developed. Interestingly, various Jeffreys and reference priors yield improper posteriors. Under general conditions, both Jeffreys-rule and “exact” reference prior result in proper posteriors. It is shown that the frequentist coverage probabilities of posterior credible intervals depend only on the shape paramater and the noice-to-signal ratio, but neither the regression coefficient nor the error variance. A simulation study is given to compare these two objective priors by frequentist coverage probabilities of the credible intervals. It is shown the exact reference priors performs much better then the Jeffreys-rule prior. Two real spatial datasets are used for illustration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

Bayesian Analysis of Spatial Probit Models in Wheat Waste Management Adoption

The purpose of this study was to identify factors influencing the adoption of wheat waste management by wheat farmers. The method used in this study using the spatial Probit models and Bayesian model was used to estimate the model. MATLAB software was used in this study. The data of 220 wheat farmers in Khouzestan Province based on random sampling were collected in winter 2016. To calculate Bay...

متن کامل

AN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES

In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...

متن کامل

Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model

Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010